Effect of Temperature on Sulfide Photooxidations. Evidence for a Reversibly Formed Exciplex?

Edward L. Clennan,* Kristine **A.** Oolman, Kang Yang, and Dao-Xin Wang

Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071

Received February 6, 1990

A kinetic study of the reactions of singlet oxygen with pentamethylenesulfide, 1,4-dithiane, and 3-hydroxy-
3.4-dimethylpentyl p-methylphenyl sulfide has been conducted as a function of temperature. The total rates of singlet oxygen removal *(b)* and the chemical rates of sulfide disappearance *(k,)* have **been measured** and the physical quenching rates determined from the relationship $k_T = k_t + k_q$. The activation barriers for the photooxidations **are** very different from **those observed** in photooxidations orother **subetratea** and **are** explained by tighter binding in sulfide/oxygen exciplexes and bimolecular conversions of the exciplexes to products.

The aesthetically pleasing photooxidative transformation of a sulfide to a sulfoxide is a deceptively simple reaction.¹ *An* accurate description of the mechanism has proven difficult **as** a result of the inability of key reaction intermediates to be isolated and spectroscopically identified? The ability of sulfides to both react *(k,)* and physically quench (k_o) singlet oxygen has further complicated attempta to understand this important reaction? We report here the activation enthalpies and entropies for the reactions *(k,)* of pentamethylenesulfide **(l),** l,4-dithiane **(21,** and **3-hydroxy-3,4dimethylpentyl** p-methylphenyl sulfide **(3)'** with singlet oxygen. These activation barriers are significantly different from those reported for the reactions of singlet oxygen with other organic substrates⁵ and provide additional insight into the mechanism of sulfide photooxidation.⁶

The relative chemical rate constants of singlet oxygen removal $(k_r)_{rel} = k_r(X^{\circ}C)/k_r(Y^{\circ}C)$ were calculated by using equation **1.** The concentrations of sulfoxide and sulfone products were measured after photolysis time *t(s)* by *ca*pillary GC at a variety of temperatures X °C under otherwise identical reaction conditions. These values at temperature X °C were converted to relative rate constants, $k_r(X^{\circ}C)/k_r(Y^{\circ}C)$, by dividing by the concentrations of products produced per unit time at *'Y* OC.

$$
\frac{k_r(X^{\circ}\text{C})}{k_r(Y^{\circ}\text{C})} = \left[\frac{([\text{sulfoxide}] + [\text{sulfone}])_{X^{\circ}\text{C}}}{([\text{sulfoxide}] + [\text{sulfone}])_{Y^{\circ}\text{C}}}\right] \left[\frac{t(\text{s})_{Y^{\circ}\text{C}}}{t(\text{s})_{X^{\circ}\text{C}}}\right]
$$

These relative rate constanta were converted to absolute rate constants (Table I) by multiplying by the chemical reaction rate constants, $k_r(Y^{\circ}C)$, which were determined directly at *Y* **"C** by the competitive kinetic method of **Higgins,** Foote, and Cheng? The chemical rate constant for **1** was measured at -78 "C *(Y* **"C)** in competition with

(3) Gu, C.-L.; Foote, C. S. J. Am. Chem. Soc. 1982, 104, 6060–6063.
(4) Clennan, E. L.; Yang, K. J. Am. Chem. Soc. 1990, 112, 4044–4046.

(5) Gorman, **A. A,; Hamblett, I.; Lambert, C.;** *Spencer,* **B.; Standen, M. C.** *J. Am. Chem.* **Soc. 1988,110,8059-8059.**

tetramethylethylene $[k_r = (1.2 \pm 0.1) \times 10^7 \text{ M}^{-1} \text{ s}^{-1} \text{ at } -78]$ "C], for **2** at 25 **"C** *(Y* "C) in competition with 2,5-dimethyl-2,4-hexadiene $(k_7 = 7.4 \times 10^5 \text{ M}^{-1} \text{ s}^{-1})$,⁸ and for 3 at 25° C (Y ^oC) in competition with limonene $[k_r = (1.74$ \pm 0.13) \times 10⁵ M⁻¹ s⁻¹] and at -50 °C *(Y* °C) in competition with cyclopentene $[k_r = (3.9 \pm 0.4) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}]$. A plot of the data generated during the competitive photooxidation of 3 with cyclopentene at -50 "C is shown in Figure 1.

The activation barriers **were calculated** from the absolute chemical rate constanta by using transition-state theory and are collected in Table I along with the rate constanta for photooxidation of these compounds. The activation barriers for DABCO **(41,** tetramethylethylene **(61,** and **1,3-diphenylisobenzofuran (6)** are **also** included in Table I for comparison.⁵

Discussion

These data and those for compounds **1-3 are** consistent with the exciplex mechanism and kinetic expressions depicted in Figure 2. Exciplexes have previously been invoked in order to explain sulfide quenching of aromatic
hydrocarbon fluorescence.⁹ Gorman and co-workers⁵ hydrocarbon fluorescence.⁹ demonstrated that the reaction of singlet oxygen with diphenylisobenzofuran exhibits two linear regions in its Arrhenius plot corresponding to the diffusion-controlled where $k_r = k_D$ and to the preequilibrium $\lim_{\text{int}} (k_{-D} \gg k_D)$ where $k_r = K(k_D)$. The negative activation enthalpies $(\Delta H^*_{\text{obsd}} = \Delta H^*_{\text{p}} + \Delta H^{\text{o}})$ and entropies $(\Delta S^*_{\text{obsd}} = \Delta S^*_{\text{p}} + \Delta S^{\text{o}})$ observed (obsd) in the preequilibrium limit represent composite values for product and exciplex formation.

Houk and co-workers have suggested that negative activation barriers are anticipated for very energetic species such **as** singlet oxygen and that no exciplex or complex is required to explain the experimental data.^{10,11} This is a consequence of the absence of any substantial enthalpic barrier for these reactions and the necessity to overcome **an** entropic barrier. Houk and co-workers point out that

⁽¹⁾ Ando, W.; Takata, T. In Singlet O₂. Reaction Modes and Products.
Part 2; Frimer, A. A., Ed.; CRC Press, Inc.: Boca Raton, FL, 1985; Vol. **111, pp 1-117.**

⁽²⁾ Jemn, F.; Foote, **C. S.** *J. Am. Chem. SOC.* **1988,110,2368-2375.**

⁽⁶⁾ Ando, W. Sulfur Rep. 1981, 1, 147–213.
(7) Higgins, R.; Foote, C. S.; Cheng, H. In Advances in Chemistry
Series; R. F. Gould, Ed.; American Chemical Society: Washington, DC, **1968; Vol. 77, pp 102-117.**

⁽⁸⁾ Separation of k_r and k_q and the k_r value for 2,5-dimethyl-2,4-hexadiene used in this study were taken from the following: Manring, L. E.;

Foote, C. S. J. Am. Chem. Soc. 1983, 105, 4710–4717.

(9) Beecroft, R. A.; Davidson, R. S.; Goodwin, D.; Pratt, J. E. *Tetra-hedron* 1984, 40, 4487–4496.
 hedron 1984, 40, 4487–4496.

(10) Houk, K. N.; Rondan, N. G.; Mar

⁽¹¹⁾Houk, K. N.; Rondan, **N.** *G. J. Am. Chem.* **Soc. 1984,** *106,* **4293-4294.**

Table I. Rate Constants and Activation Parameters for the Reactions of Singlet Oxygen with Organic Substrates

compd	solvent	T , K	$k_{\rm r} \times 10^{-5}$, M ⁻¹ s ⁻¹	ΔH^* kcal/mol	ΔS^* , kcal/mol	r^c
ı	acetone	293	4.7			
		273	8.6			
		253	15			
		233	35			
		213	54			
		198	94	$-4.1 \bullet 0.3$	-46 ± 1	0.993
	toluene ^ª	293	3.8			
		273	10.8			
		253	35.4			
		233	75.8			
		213	116			
		198	200	-5.1 ± 0.8	-49 ± 4	0.970
2	acetone	293	2.4			
		273	6.7			
		253	22			
		233	84			
		213	113			
		202	166	-6.2 ± 0.6	-54 ± 2	0.970
3	acetone	293	0.65			
		263	1.9			
		243	3.9			
		223	9.7			
		208	26			
		195	34	-5.2 ± 0.3	-54 ± 1	0.995
4 ^b	toluene	298	2100	-1.6 ± 0.3	-30 ± 1.2	
$\mathbf{5}^b$	toluene	298	360	-0.74 ± 0.11	$-30.1 \triangleq 0.5$	
6 ^b	toluene	298	8900	-1.3 ± 0.2	-25.9 ± 0.6^d	
				$1.0 + 0.3$ ^e	-16.6 ± 1.2	

"Assuming $k_a = 0$ **at -78 °C.** b Reference 5. "Correlation coefficient. "Preequilibrium limit. "Diffusion limit.

Figure 1. Competitive photooxidation of 3 and cyclopentene at -50 °C; [c-C₅H₈] = 5×10^{-2} M; [R₂S] = 2×10^{-2} M.

this phenomenon will be observed for reactions that have ΔS^* more negative than approximately -6.7 eu.¹² Gorman,⁵ on the other hand, has pointed out that the mechanistic diversity of singlet oxygen reactions that exhibit negative activation barriers, as well as a large body of photochemical precedent, argues against the Houk proposal and that the data is more consistent with a reversibly formed intermediate.

If an exciplex is an authentic intermediate, the substantially negative activation enthalpies observed for photooxidations of sulfides 1-3 in comparison to photooxidations of 4-6 most reasonably represent a tighter binding (more negative ΔH°) in the sulfide/oxygen exciplex. The heat of reaction for the photooxidation of 1 mol of 1 to its sulfoxide $(-37.17 \text{ kcal/mol})^{13}$ is smaller than for the conversion of 5 to its hydroperoxide $(-42.40 \text{ kcal/mol})^{17}$ and larger than for physical quenching by 4 (-22.5 kcal/ mol). This argues against but does not rigorously exclude the alternative possibility that a substantially smaller ΔH^* alone is responsible for the more negative activation enthalpies.

The tighter binding in the sulfide/oxygen than in the DABCO/oxygen exciplex is surprising, given the similarity in the ionization potentials of sulfides [Et₂S (8.42 eV) ; $Me₂S$ (8.69 eV); MeSH (9.44 eV)]¹⁸ and amines [Et₂NH (8.4 eV) ; Me₂NH (8.9 eV) ; MeNH₂ (9.4 eV)].¹⁹ The more diffuse lone-pair orbitals and reduced steric environment around sulfur, in comparison to amines, however, may promote exciplex formation. The importance of steric effects upon exciplex stability is well established.²⁰

⁽¹²⁾ Houk, K. N.; Rondan, N. G.; Mareda, J. Tetrahedron 1985, 41, 1555-1563.

⁽¹³⁾ Calculated by using the Benson group¹⁴ thermochemical data.
C-(H)₃(C) = -10.08 kcal/mol; C_q-(C)₂ = 10.34 kcal/mol; C_q-(H)₂ = 6.26
kcal/mol; C-(O)(C)₃ = -6.60 kcal/mol; O-(O)(H)¹⁵ = -16.3 kcal/mol; cis correction for $5 = 3.00$ kcal/mol; excitation energy of singlet oxygen = 22.5 kcal/mol.¹⁶

⁽¹⁴⁾ Benson, S. W. In Thermochemical Kinetics, 2nd ed.; John Wiley

[&]amp; Sons, Inc.: New York, 1976.

(15) Baldwin, A. C. In The Chemistry of Functional Groups, Per-

oxides; Patai, S., Ed.; John Wiley & Sons Ltd.: New York, 1983; Chapter 3, pp 97-104.

⁽¹⁶⁾ Kasha, M. In Singlet Oxygen; Physical Chemical Aspects; Frimer, A. A., Ed.; CRC Press, Inc.: Boca Raton, FL, 1985; Vol. I, pp 1-11.
(17) Calculated by using the Benson group¹⁴ thermochemical data and

equal to one-half of the heat of the following reaction: $2(\text{CH}_2)_6S + {}^1O_2$
 $\rightarrow 2(\text{CH}_2)_6S0$. C-(H)₂(C)₂ = -4.95 kcal/mol; S-(C)₂ = 11.51 kcal/mol;

SO-(C)₂ = -1.4.1 kcal/mol; C-(C)(H)₂(S) = -5.65 kcal/mol.

(

^{1971, 54, 4960-4961.&}lt;br>
(19) Ogryzlo, E. A.; Tang, C. W. J. Am. Chem. Soc. 1970, 92, 5034-5036.

Figure 3. Arrhenius plot for the photooxidation of 1.

The activation entropies for sulfide photooxidations in comparison to the photooxidations of **4-6** are **also** substantially more negative. The entropies of exciplex formation, ΔS° , have been measured in several cases and exhibit values as negative as -25 cal mol⁻¹ K⁻¹ (e.g., α cyanonaphthalene/1,2-dimethylcyclopentene exciplex; ΔS°
= -23.3 cal mol⁻¹ **K**⁻¹ at 273 **K**).²¹ It is unreasonable, however, to assume that ΔS° for sulfide/oxygen exciplexes would be subatantidy more negative than these measured values or different from ΔS° for the DABCO/oxygen exciplex. We suggest that the very negative activation entropies for the sulfide photooxidations are due to a very negative ΔS^* _p and provide evidence that the exciplex is converted to the product in a bimolecular reaction.

The total rate of disappearance of singlet oxygen, k_T , was **also** measured for the reaction of **1** in acetone **as** a function of temperature, using the previously described time-resolved infrared emission apparatus.^{22,23} These data are displayed graphically in Figure **3** along with the values for k_r and k_q (measured by difference $k_q = k_T - k_r$). The response of k_q to temperature is blown up in the insert in Figure 3. It appears that both the diffusion and preequilibrium regions are observed for *k,,* but unfortunately not enough points are available to accurately define the activation barriers in either region.

The tighter binding in the sulfide/oxygen exciplex in conjunction with **an** unfavorable entropy for its collapse to products suggests that the exciplex may be directly observable and could provide evidence to distinguish between the **Houk** and exciplex proposals. Studies designed to verify this suggestion are currently in progress.

Experimental Section

Proton and carbon **NMR** spectra were obtained on a JEOL GX270 instrument at **270** and 67.83 **MHz** and on a **JEOL** GX400 instrument at **400** and 100.47 *MHz,* respectively, and the *chemical* **shifts** were referenced to TMS. Analytical gas chromatographic measurements were carried out on a Perkin-Elmer *8500* gas chromatograph equipped with a flame ionization detector and a HP 10 m *X* **0.63** mm cross-linked **FFAP** or HP-1 capillary column. Chromatographic separations were carried out on a Harrison Research Model 7624T chromatotron using plates coated with EM Science 7749 silica gel 60PF254.

Rose Bengal, tetraphenylporphyrin, triphenylphoaphine, potassium permanganate, m-chloroperbenzoic acid, methyl vinyl ketone, p-methylthiophenol, cyclopentene, and magnesium sulfate were all obtained from Aldrich and ueed without further purification. Limonene was obtained from Eastman Kodak, 2 bromopropane from Aldrich, and 2,2,4,4-tetramethyl-3-pentanone from Chemical Samples Co., and all were distilled prior to **use.** 1,4-Dithiane **(2),** was obtained from Aldrich and recrystallized from ethanol prior to use. Pentamethylenesulfide **(l),** 2,5-dimethyl-2,4-hexadiene, diphenylmethane, and triethylene glycol dimethyl ether were all obtained from Aldrich and purified by literature procedures.²⁴ Spectral grade acetone for kinetic studies was obtained from Baker and used without purification. Bulk solvents such **as** hexane, ethyl acetate, ethanol, methanol, and chloroform were purified by simple distillation. Carbon tetrachloride was purified by distillation from P₂O₅. Sodium *p*toluenethiolate was prepared according to a literature procedure. 26

Competitive Kinetics. Competitive kinetics runs were conducted **as** described by Higgins, Foots, and Cheng? Calibration curves were constructed for all compounds by using either diphenylmethane, **2,2,4,4tetramethyl-3-pentanone,** or triethylene glycol dimethyl ether **as** an internal standard. The competitive kinetics runs were carried out in acetone with the following concentrations: $[1]/[tetramethylethylene] = (2.2 \times 10^{-2} \text{ M})/(1.1$ \times 10⁻² M); [2]/[2,5-dimethyl-2,4-hexadiene] = (4.98 \times $M)/(2.92 \times 10^{-2} M);$ [3]/[cyclopentene] = $(2 \times 10^{-2} M)/(5 \times$ M); [3]/[limonene] = $(2 \times 10^{-2} \text{ M})/(1.5 \times 10^{-2} \text{ M})$. The appearance of sulfide oxidation produds was monitored during the reactions of **1** and **2** and the disappearance of starting sulfide in the reaction of 3. The disappearance of 2,5-dimethyl-2,4-hexadiene and limonene and the appearance of the oxidation products of cyclopentene and tetramethylethylene were also monitored by capillary GC.

Data Treatment. The activation parameters were determined by plotting $\ln (k/T)$ **vs** $1/T$, and the confidence limits were calculated by the method of Bevington" and propagated **into** the activation parameters at the 95% confidence level.

Photolysis Conditions. The singlet oxygen reactions were conducted in either acetone or toluene, and the temperature was maintained by submersion in a methanol bath held at -78 °C by the use of a refrigerator probe (FTS Systems Inc. Flexicool). Prior to photolysis, the samples were saturated with oxygen for **20 min.** The concentrations of the starting materials and dye were approximately $2-15 \times 10^{-2}$ M and $1-3 \times 10^{-5}$ M, respectively. The irradiation was conducted under continuous oxygen bubbling by using a 750-W, 120-V tungsten halogen lamp and by fiitering out the high-energy light with a 1-cm 0.5% K₂Cr₂O₇ filter solution. The hydroperoxides from tetramethylethylene and cyclopentene were reduced with triphenylphoaphine prior to GC analysis.

p-Methylphenyl3-Oxobutyl Sulfide. A solution of 1.5 g (12.1 mmol) of p-thiocresol and 0.67 g (12.4 mmol) of **sodium** methoxide in 35 **mL** of ethanol was refluxed for 4 h. **To** thie solution was added 0.85 g (12.1 mmol) of methyl vinyl ketone, and the mixture was refluxed for an additional 4 h. Ethanol was removed, and the residue was extracted with diethyl ether. The extracts were washed with water and dried over MgSO,. The product was obtained in 62.7% yield after purification on a chromatotron using hexane/ethyl acetate: ¹H NMR (CDCl₃) δ 2.14 (s,3 H), 2.33 **(e,** 3 H), 2.73 (t, J = 7.7 Hz, 2 H), 3.09 (t, *J* = 7.7 **Hz,** 2 **H),** 7.10 (d, J = 8.1 **Hz,** 2 **HI,** 7.26 (d, J = 8.1 Hz, **2 H).**

3-Hydroxy-3,4-dimethylpentyl p-Methylphenyl Sulfide (3). Mg turnings (1.2 g, 48 mmol) and a small **Iz** crystal were placed in 10 **mL** of *dry* ether, and 6.1 g of isopropyl bromide was added at a rate that **maintained** a **vigorous reflux.** After complete addition of the bromide, 0.58 g (30 mmol) of p-methylphenyl 3-oxobutyl sulfide in 2 **mL** of ether was added dropwise. After 20 min of stirring, water was added and the products were extracted with ether. The combined extracts **were** washed with **water** and dried over MgSO,. The alcohol was obtained in 21% yield after purification by chromatotron with hexane/ethyl acetate: ¹H NMR (CDCl₃) δ 0.86 (d, J = 7.0 Hz, 3 H), 0.93 (d, J = 7.0 Hz, 3 H), 1.10 *(8,* 3 H), 1.36 *(8,* 1 H), 1.70 (heptet, J = 6.8 Hz, 1 H),

^{~~ ~ ~} **(20)** Yomu, **T.; Hay&, K.; Irie, M.** *J.* **Am.** *Chem. Soc.* **1981,109,** *ba+S484.*

⁽²¹⁾ OConnor, D. V.; Ware, W. R. *J.* **Am. Chem.** *Soc.* **1976, 98, 4706-4711. (22) Clennan, E. L.; Noe, L. J.; Wen,** T.; Szneler, *E.* J. *Org. Chem.*

⁽²³⁾ Clennan, *E.* **L.; Noe, L. J.; Szneler, E.; Wen, T.** *J.* **Am. Chem.** *SOC.* **1989,64,3581-3684.**

^{1990,222,} *s080-60&5.*

⁽²⁴⁾ Perrin, D. D.; *Armcuego, W.* **L. F.** *Purification of Laboratory Chemicals,* 3rd *ed.;* Pergamon Press: **New** York, **1988.**

⁽²⁵⁾ Fimr, L. **F.; Fiwr,** *M. Reagents for Organic Synthesis;* John **Wdey and Sone, Inc.: New** York, **1967; Vol. 1.**

⁽²⁶⁾ **Bevinpton,** P. R. *Doto Reduction* **and** *Error A~lysb for the Physical Sciences;* **McCraw-Hill: New** York, **1969.**

1.71-1.84 (m, 2 H), 2.32 (s, 3 H), 3.01-3.09 (m, 2 H), 7.09 (d, J = 8.1 Hz, 2 H), 7.26 (d, J = 8.1 Hz, 2 H); ¹²C NMR (CDCl₃) δ 16.84 (9, *J* = **125** *Hz),* **17.62 (q,** *J* = **125** *Hz),* **20.98 (q,** *J* = **111** *Hz),* **22.79 (q,** *J* = **125** *Hz), 28.97* **(t,** *J* = **134** *Hz),* **37.17 (d,** *J* = **125** *Hz),* **38.89 (t,** *J* = **127** *Hz),* **129.66 (d,** *J* = **159 Hz), 129.82 (d,** *J* * **160 Hz), 132.7 (a), 136.0 (e).**

Acknowledgment. We thank the National Science Foundation and the donors of the Petroleum Research Fund, administered by the American Chemical Society, for their generous support of this research.

Supplementary Material Available: The **competition data for the reactions of 1 with tetramethylethylene, 2 with 2,s-dimethyl-2,4-hexadiene, and 3 with limonene and the derivation of the equations for the observed enthalpy and entropy of activation (4 pages). Ordering information is given on any current masthead page.**

Gas-Phase Reaction between Oxygen (sP) Atoms and Hexafluoro-2-butyne

Peter G. Mahaffy and Alex VanderWoude

Department of Chemistry, The King's College, Edmonton, Alberta, Canada T5H Wl

Otto P. Strausz*

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Received December 4,1990

The gas-phase addition of oxygen (8p) **atom from the mercury-sensitized photodecomposition of nitrous oxide to hexafluom2-butyne has been studied at 298 K. Tetrakia(trifluoromethy1)furan (4) is the major** final **product that arises** fnrm **the reaction of the** initial **triplet ketocarbene adduct with a second molecule of hexatluorc~2-butyne.**

Introduction

A great deal of effort **has** been devoted in recent years to elucidating the mechanism of the photochemical Wolff rearrangement. Of fundamental theoretical interest has been the involvement of transient ketocarbene and antiaromatic 4π -electron oxirene species. One aspect of recent experimental investigations has been to carry out the photolysis of precursor diazo ketones with substituents potentially capable of stabilizing the elusive oxirene in t ermediates.^{1,2} Since perfluoroalkyl substituents have been shown³⁻⁵ to have the capability of providing remarkable stabilization of certain highly strained compounds, **we** have investigated and reported the photolysis of several perfluorinated *a-diazo* ketones in the gas phase6 and inert matrices.^{7,8}

Concurrently, theoretical studies of the various species on the unsubstituted formylmethylene-oxirene surface have provided insight **into** the nature and relative energies of various structures that might be involved in the Wolff rearrangement of the parent system.^{9,10}

The addition of ground-state oxygen atoms to substi**tuted** acetylenes provides another entry point to one of the poesible intermediates in the diazo ketone photolysis. There are many reports of the addition of ground state $O(^3P)$ atoms to alkenes¹¹⁻¹⁵ and a few reports of the ad-

-
- **(6) Mello, R.; Fiorentino, M.; Sciacovelli,** *0.;* **Curci, R.** *J. Org. Chem.* 1988, 53, 3890.
- *(6)* **hjirhatry, P. G.; Vir, D.; Tom, M.; Bourdelande, J. L.; Straw,**
- **(7) Toma, M.; Bourdelande, J. L.; Clement, A.; Straw, 0. P.** *J. Am.* **0. P.** *J. Org. Chem.* **1987,62,2880.** *Chem.* **SOC. 1988,106,1698.**
- **(8) Tom, M.; hunah, P.; Bourdelande, J. L.; Clement, A.;** *Chem. Soc.* 1988, 105, 1698.

(8) Torres, M.; Raghunathan, P.; Bourdelande, J. L.; Ck

Toth, G.; Strausz, O. P. Chem. Phys. Lett. 1986, 127, 205.

(9) Bogel, H. Anal. Chim. Acta 1988, 206, 233.

(9) Bogel, H. *Ad. Chim. Acta* **1988,** *W,* **233.**

(10) Novq J. J.; McDouall, J. J. W.; Robb, M. A. *J. Chem. SOC., Faraday Trona.* **2,1987,89,1629.**

dition to alkynes.¹⁶⁻²⁰ Most of these reactions appear to proceed via initial formation of a triplet diradical. Thus, the investigation of the reaction between $O(^3P)$ atoms and selected **alkynes** may facilitate the interpretation of reaulta from mechanistic studies of the Wolff rearrangement.²¹

This paper presents the first report of the gas-phase reaction of $O(^3P)$ atoms with a perfluorinated alkyne, hexafluoro-2-butyne. **This** study was undertaken to sup plement our previously reported investigation of the gasphase photolysis of **hexafluoro-3-diazo-Z-butanone (l), octafluoro-2-diam-3-pentanone (2),** and octafluoro-3-dia-

- **(11) Schmoltner, A. M.; Chu, P. M.; Brudzyneki, R. J.; Lee, Y. T.** *J.* **(12) Cvetanovic, R. J.** *J. Phys. Chem. Ref. Data* **1987,16, 261.** *Chem. Phys.* **1989,91,6926.**
- **(13) Cvetanovic, R. J.; Singleton, D. L.** *Rev. Chem. Zntermed.* **1984,6, 183.**
-
- **(14) Gutman, D.** *J. Chim. Phya.* **1987,84,409. (15) Umstmd, M. E.; Woods, F. J.; Lm, M. C.** *J. Phys. Chem.* **1979, 83,1289.**
- (16) Michael, J. V.; Wagner, A. F. J. Phys. Chem. 1990, 94, 2453.
(17) Schmoltner, A. M.; Chu, P. M.; Lee, Y. T. J. Chem. Phys. 1989, $91.5365.$
-
- **(18) Ault, B. S.** *J. Phys. Chem.* **1989,99,2456. (19) Mitchell, M. B.; Brunning, J.; Payne, W. A.; Stief, L. J.** *J. Phys.* **(20) Homann, K. H.; Wellmann, C.** *Ber. Bunsen-Ges. Phys. Chem. Chem.* 1988, 92, 1502.
- **1983,87,627.**
- **1978,96,124. (21) Fenwick, J.; Rater, G.; Ogi, K.; Straw, 0. P.** *J. Am. Chem.* **Soc.**

⁽¹⁾ Lewara, E. G. *Chem. Rev.* **1988, 83,619.** (1) Lewars, E. G. Chem. Rev. 1983, 83, 519.

(2) Torres, M.; Lown, E. M.; Gunning, H. E.; Strausz, O. P. Pure Appl.

Chem. 1980, 52, 1623.

(3) Lemai, D. M.; Dunlap, L. H., Jr. J. Am. Chem. Soc. 1972, 94, 6562.

(4) Kobaya